ESERCIZI REAGENTE LIMITANTE

1. Esercizio 1:

Reazione: Mg+O₂→MgO

Si hanno 25.23 g di magnesio (Mg) e 40.54 g di ossigeno (O₂). Determinare il reagente limitante e calcolare la massa di ossido di magnesio (MgO) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

2. Esercizio 2:

Reazione: $H_2+Cl_2\rightarrow HCl$

Si dispongono di 15.87 g di idrogeno (H₂) e 48.20 g di cloro (Cl₂). Determinare il reagente limitante e calcolare la massa di cloruro di idrogeno (HCl) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

3. Esercizio 3:

Reazione: $Ca+N_2+O_2 \rightarrow Ca(NO_3)_2$

Si hanno 30.11 g di calcio (Ca) e 20.32 g di azoto (N₂). Determinare il reagente limitante e calcolare la massa di nitrato di calcio (Ca(NO₃)₂) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

4. Esercizio 4:

Reazione: NaCl+Br₂→NaBr+Cl₂

In un esperimento, si combinano 18.65 g di cloruro di sodio (NaCl) e 36.78 g di bromo (Br₂). Determinare il reagente limitante e calcolare la massa di bromuro di sodio (NaBr) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

5. Esercizio 5:

Reazione: Fe+O₂→FeO

Si hanno a disposizione 22.99 g di ferro (Fe) e 64.76 g di ossigeno (O₂). Determinare il reagente limitante e calcolare la massa di ossido di ferro (FeO) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

6. Esercizio 6:

Reazione: $NH_3+O_2 \rightarrow H_2O+N_2O$

Si dispongono di 40.87 g di ammoniaca (NH₃) e 28.43 g di ossigeno (O₂). Determinare il reagente limitante e calcolare la massa di acqua (H₂O) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

7. Esercizio 7:

Reazione: $CH_4+O_2 \rightarrow CO_2+H_2O$

Si hanno 15.32 g di etanolo (CH₄) e 80.55 g di ossigeno (O₂). Determinare il reagente limitante e calcolare la massa di anidride carbonica (CO₂) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

8. Esercizio 8:

Reazione: $H_2S+O_2 \rightarrow H_2O+SO_2$

In un esperimento, si combinano 25.54 g di solfuro di idrogeno (H₂S) e 64.89 g di ossigeno (O₂). Determinare il reagente limitante e calcolare la massa di acqua (H₂O) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

9. Esercizio 9:

Reazione: CaCl₂+NaF→CaF₂+NaCl

Si dispongono di 30.76 g di cloruro di calcio (CaCl₂) e 56.28 g di fluoruro di sodio (NaF). Determinare il reagente limitante e calcolare la massa di fluoruro di calcio (CaF₂) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.

10. Esercizio 10:

Reazione: HCl+NaOH→NaCl+H₂O

Si hanno a disposizione 18.43 g di acido cloridrico (HCl) e 32.76 g di idrossido di sodio (NaOH). Determinare il reagente limitante e calcolare la massa di cloruro di sodio (NaCl) prodotta, insieme alla massa rimanente a fine reazione del reagente in eccesso.